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We consider a special class of integral equations of the first kind with an irregular difference
kernel of complex structure, dependent on a dimensionless parameter A. We construct an
asymptotic solution of this equation for small values of . Use of the Wiener-Hopf method
and introduction of a class of special approximations to the Fourier kernel transform, allows
us to perform an approximate factorization and thus bring the given problem to the numerical
stage.

The results obtained are used to investigate axisymmetric problems of the interaction
between a stiff tire and the surface of an infinite elastic cylinder as well as the interaction
between a stiff bushing and the surface of an infinite cylindrical cavity in an elastic space.
Solutions are obtained in the form of fairly simple expressions, which coincide asymptoti-
cally with the corresponding solutions of [ 1], Thus the method given in {1} and the method
derived in the present paper, make possible the complete investigation of the given class of
integral equations over the whole range of values of .

1. Structure of the kernel of the integral equation and of its 'so-
Iution. Let us consider an integral equation of the form

Vomk (S5 ) dv—af @), lal< (1)
-1
K(t)=3 S L0 pint gy (tz";”) (1.2)

The function L (u) u"! is assumed even, real and regular on the real axis — oo < <oo;
moreover we assume

Lu?r=A4 +0@u? as u—0 (1.3)
L@ ut = [l (1 4ol +ou?® +0 (w1, Jujoe (1.4

Using the above properties of [, (u) u~}, we can show the structure of the kemel X (¢). It
is

K(t)=—In[t|+ag|t]|+ as + £ (), 0t < oo (1.5)
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2

3eqt? S‘ [ul. {(u) — u — ¢; — csu™ 1] (cos ut — 1) — Yseque™™ t du
5 u?

F(t)= 2 Im|e| - 2%

? - - 1
0___5.9_(‘.‘)_%:“_8__(1“, lgo = — =~ 1€y (1.6)

Here we used the formulas (2.6) of [1}. Next we shall prove the following lemma,
Lemma 1.1 The function F(t) of the form (1.6) belongs to the class of fanctions

H= (—=21% 2/R). 1 —e<a<<i, £>0
for all 0 <|¢| < oo (definition of the class of the functions H,*(-~ B, B) is given in [1]).
P ro o f. Letus find the second derivative of F (¢) given by (1.6)

F:(.:,)_—_czlnm-D§{[uL(u)—umc1-—f—f—] cosuz+—c;—e-“}du .7
0

We note that the properties (1.3) and (1.4) of L (4) u~! imply that the integral in (1.7)
converges uniformly for all 0 <|¢| <oo, and the proof follows from this.

Let us now turn our attention to the structure of the solution of (1.1). We shall require
the following lemma,

Lemma L2 Ify(f) E Hn*(—1,1) wherea > % when 1 — £<|¢| <1 and
a>0when0<§t§<1—s, £ > 0, then

d
I (2) = S Vi ECn (=L 1), l2i<H (1.8)

P r o o f. Using the well known relation
1

5‘ dt 0
Y=g Vi—8
we can write the integral (1.8) as

1
_ T (8) — ¥ (%)
L(z)= Ji—aVi-=

which, dszereuuated formally m times wlth respect to o yields

dt (1.9)

m T —1(@)—(t—2)/1! — =t — 2™ ]y ()™
()(“)"m's ( 9;)/ :;nffBV1 =2 /mlv @ (1.10)

Using now the ldentmes [2]

_ 2 (t— 2™ 1
rO—1@=Srr e — = EE e - s et e
x
(t__i J— S (t — T)m—l dT
we can obtain the following estimate for the numerator of the integrand in (1,10)
l’r(t)—'r(x)-—(t~—=v}—-1!'r'(x) Sl Gk A S O T E SN CR T
(i )

[r O™ — 1@ — o 1,, S E=o™  ) — ™ @) dr | <

A
<Tn_i.(£_x)m+l.+ (m_i}! S(tmf)m+‘_ldf=31t-—xlm+.
x
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In the derivation of (1.11) we assumed, without any loss of generality, that ¢ > x.

Next we shall prove that Il(m)(x) & C (-1, 1). For this, it will'be sufficient to show
that the integral (1.10) converges uniformly for all x & [— 1,1]. This will also justify the
differentiation under the integral sign in (1.9). Uniform convergence of the integral (1.10)
can be shown in a fairly straightforward manner, using the estimate (1.11), and this proves
the lemma.,

Corollary L1 Hy@)e Hy*(—1,1), a>0, then

1 —
12($)=§j‘(t_)t‘v_.—_15:‘£2_dtec7"(—_1’1)’ |zl <1
=1

(formulation of this corollary was given in [3]).
Corollary L2 Iy H, *(—1 +¢, 1), >0, >0ady ()
e HnmP (—1, —1 + &), p >/, then
1

_ 7 (2) 11—t 1\
L= M (1) dtecu—1,1,  ja1<1
-1

An analogous corollary exists for the integral

1

i Ya

Io(z) = f—_(_);(}fﬁ)’dt (1.12)
—1

We shall further assume that the function f(x) appearing in the right-hand side of the
integral Eq. (1.1) belongs, at least, to HIIB (-1, 1), 0 < B < 1. Then the following theorem
(which was formulated in [1} but had some errors, now removed, in its proof), exists.

The orem 1.1. If asolution of the integral Eq. (1.1) exists in the class of func-
tions L_(-~1,1), 1+8>p > 1, 8> 0, then for any value of A & (0, o) it will have the
form QS(;) =(1 -x2)% w () where w, (x)E'. C(-1, 1)

Pr o o f. We shall represent the integral Eq. (1,1) with the kemel given by (1.5) in the
form of an equivalent integral equation of the second kind

1
I rwyi=e
e

—1

1 1
+%;\ ‘f_—:ﬂd‘_g [amsgn(t—y)+ F (t—,'—yﬂ <p(y)dy}, P=_S‘:(p(y)dy (1.13)

-1

with the condition

1 1 1
P=p 2xi+ a0 {—1 }%—%_le—;—‘:—ﬁél [am =¥l p ('-):y)]«p(y) dy}(i.u)

Assumption of the Theorem implies that ¢ (x)E Lp( —1, 1), then even more so ¢(x) E
L (=1, 1). Then P < oo, and using the result of Lemma 1.1 we can prove, that

1
Aty a«
To=\F (=) emdyc B (—1, 1)
—1
Now, the properties of the function f(x) given above and the Corollary 1.1, bring us to
conclusion that
lf HRA! 1 ¢ Vi—1 . t
’ ) 12 , —vy
- S T r—z Uty VT SF (—r )q)(y)dyeC(—i,i)
—1 —1 —1
To prove the theorem it remains to show, that
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ro={ Y=l |
—'1 {—z d‘Sssn(f-y)wy)dyEC(—i, 1) (1.15)
- -1

Let us write the inner integral of (1.15) as
t

N(t)=2 S P(y)dy—P
—1
Then, using the Hilder inequality we can prove that
N(t)EH(’;’q(——i,i), 1/g-+1/p=1
which, together with the Corollary 1.1, proves the validity of (1.15) and this completes the

proof.
Next we shall see, whether a solution of (1,1) bounded at one or at both ends x = £ 1 of

the line of contact, can be obtained.

Theorem 1.2. If the function [ (z) = H* (—1+ ¢, 1), @ > 0 and f (2)
e HB (—1, —1 4 g), p > Y,, a solution of (1.1) exists in the class of functions
L (-~ 1, 1), 1+ 8>p>1 and is bounded in the &-neighborhood of the point x = — 1, them
for any )\ &= (0, o) this solution will have the form ¢b(x) = (1 + %)% (1 — )% @, (%), where
wg (%) EC(~1, 1) and where the following relation holds

P:“if'(t)<:t§)v’dt—

—"n'ii.' § (i—i-;-)‘/’dt § P (t)[azosgn(rmt)-{- F’(T;t )]dr (1.16)
4 =1

The proof is analogous to that of the Theorem 1.1. We must, however, use the Corollary
1.2 of the Lemma 1,2 and the integral Eq.

1 i ’
g =— (R (L SG—:%‘) e Sq)(r)[azosgn(r—-t)+

—1

T )] dt+ ‘S‘t/lth“t)%dt} (.47

which is equivalent to {1.1) under the condxtxons {1.14) and (1.16).

An analogous theorem exists when the solution of (1.1) is assumed bounded in the g-
neighborhood of the point x = 1.

Theorem 1.3 Ifthe function f (z) = H,*(—1 + ¢, 1 —¢), a> 0
e>0;f () € HP(—1, —1 +¢), B> Yy f (2) E HyY (1 — & 1),y >y
a solution of (1.1) exists in the class of functions L {— 1, 1) and is bounded in the e~
neighborhood of the points x = 1 1, then for any A &= {0, o) it has the form b (x) = (1 — x%)*#
(o3(x). Here mSEC{—— 1, 1) and the relations

P | e | i [ s oo (5o
-1

0= A {%t)_d: 7 S -‘/1 S@(r){azgsgn(T_t)+F. (r—:)] e
-1

hold. The proof is again auulogous to that of the Theorem 1.1. Lemma 1.2 must however,
be used together with the integral Eq.

At
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1

1
1 dt
| SWT Scpa)[a,.,sgn@_M

e (55 aer [l )

which is equivalent to (1.1) under the conditions (1.14) and (1.18).

2. Method of small A. 'Stability of the 'solution of the integral
equation (1.1). Construction of the class of possible approximations
to its kernel. Since under the assumptions made previously the function f(x) can be
expanded into a Fourier series, we find that the linearity of the integral Eq. (1.1) implies
that it is sufficient to obtain a solution to an integral equation of the following particular

type

1
@) =—"7 V1=

1
foa@K (552 ) ar =g, |21t @)
—1

We propose to obtain an approximate solution of (2.1) for small values of A. It was shown
in [3)] that the zeroth term of the asymptotic form of the solution for small \ can be repre-

sented as
9a(@) = 0. (S55) + 0 (F52) — b (1) (2.2)

where the functions 1 ,(¢) and ¢/, (¢) are given by the following integral Eqs.
o]

Sxpi (VYK (t—1)dt = ny,e¥B, 0Kt < oo (2.3)
0

S Po (1) K (t —T1)dv = nyee™®, |t o0 (2.4)

Te =7Alet,  po=1A7,  B=M

Solution of the integral Eq. (2.4) can be obtained using the convolution theorem for the

integral Fourier transform, and has the form
Yo (8) = vo BL™ (B) ¥ (2.5)

Solution of (2.3) can be obtained using the Wiener-Hopf method [4]. Koiter has shown
in [5] that in order to bring the solution to the form suitable for computation, it is expedient
to resort to approximate factorization, and he proposed the following approximation to the
Fourier transform of L (u) u~? appearing in the kernel X (¢)

L‘u(u) = V u? -1{»- A2 ﬁ: ((Zg (P1(0)= P; (0) = B = const) (26)

where P, (x) and P, (u) are even polynomials of equal degree. Authors of [6] give a more
general approxxmauon of the form

L' () _ V*+ B Yy (624 Dys?)
s WL H(u’—{—E %) (C’ —z= ) 2.7

which gives a high accuracy at small number N.
In our opinion, the following, easily factorizable approximation also merits attention

L% () _ Varo
b At VO MDAt VCr D rmt VT dDTe
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N

N
@+Dy) ¢ Dy _
8 nl;[]. (* + Enl) (% + m)$n=1 Ep* 4, %> 0 (2'8)

In the number of cases it yields a more accurate structural representation of L (u) u”},
thus raising the accuracy of the solution.

It is easily seen:that all approximations given by (2.6) to (2.8) satisfy the property (1.3)
of L (u) u~1; but when | u| + o0, their asymptotic form is

L* ) u?t = fult 1 +c*u? 40 (u] (2.9)
This yields the following asymptotic representation for the kernel
K* (1) = —In [t] +ag* +F* () (0<t<ex)
F*(t) = O (21n [¢]) mpm t—0 (2.10)

Let us compare Formulas {1.4) to (1.6) with (2.9) and (2.10). We can easily see that the
absence of the termm |u|"! within the square bracket in (2.9) leads to the absence of the
term | ¢| in (2.10), Thus an inaccuracy occurring in the behavior of the approximating func-
tion L * (u)H as | u| -+ o would lead to conclusion that the function K * (t) + In |¢| is smoo-
ther than K (¢) + In | t‘.

We shall show, how this may influence the accuracy of the asymptotic solution of (1.1)
at small values of A. We shall consider (1.1), (1.5) and an integral Eq. of the form 5.11)

2.

1
fom[—miml e, 1202 by 4 6 (552 )| dv=mg (2), J=i<t
- We shall assume that, similarly to {1.1) and (1.5), we have
gx)=s HPE(—1, 1), B>0 Gye HE(—2/4x, 2/4)
1 —e<<la<t,e>0

The integral Eq. (2.11) shall be called perturbed with respect to (1.1) and (1.5), if the
following conditions hold

lase — baol < &, laso — bsol <X €
1f @) —8 @ gecry <& 1FO—G®)|ar-arnyn<e  (2.12)
The norm on the space H,*(— B8, B) will be given by
1/ @) s, o = max|f(z)]| + max|f (z)| +

f(t) =~ 1" (x) :
+8“P’L—“§“;:“;F“L (=, e [—B,B] (2.13)
It can easily be shown that H, ®(~ 3, B) is a complete, linear, normed space. From the
definition of the norm on H1 &(— R, B) it follows that, if

"i (x)”g,fx(—l‘l) < g,

then
@ leen<e @y <e<If () —F @I<elt—zl* (2.14)
We shall now prove the following theorem.
Theorem 21, If solutions exist in the class of functions L _(~ 1, 1), 1+8>p>
> 1, §> 0 for both, the integral Eq, (1.1) and (1.6) and another integrafequation perturbed
with respect to the former, then the estimate

-1
9 @) — @1 (@)oo < de(1—2)",  A=const (2.15)
holds for any A= (0, o )»
P r o o f. Let us represent the integral Eq. (2,11) by an equivalent integral equation
of the second kind analogous to (1,13) and (1.14). The difference between the obtained
equation and (1.13) will be
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1 1
1 dt [t—yi t—u\1 ¥ dy
“’meazwéwi Viee j} 5 46 (5 Hw“ya”‘

s fyYI=E ¢ L (t—y\ w)dy
=+ Sw———tﬂ @ Y hosgn =y + ¢ (52) | HEL g,

-1

1
fidt 1 dt jt—x]
T = nzmzwésg}{ b X«,fm“}? Eﬁm“f“;;“”f’% ot

~1

+F1( ) w@ar 4+ dew

—1

i }/1 o g . t-—y

—im ) T Vlmsgnit—y)+ Fr {5~ | 9y dy (2.18)
—1 —1 3‘

where the term P — P, is replaced, in accordance with (1 14), by

ponmfronrs [HUE L ot (a5t o5

P ) ' i 4 1 | ; \% . {247
9 L L tovi —¥ } N DI
Vieo ¥~ = S Vi—s § [“20 ot Fi( 7y ) (AU Gy s o

—1 -1
The following notation is also used in (2,16) and (2,17)
(1= % (@) =0 (=) — 1 (2), cao= a0 — baor 30 = €50 — bag
hm=f@—zgla, FKH=FO-—-GH (2.18)
We shall now investigate the integral operator appearing in the left hand side of {2.16)
From the Theorem 1,1 it follows that i {x) &€ C(~ 1, 1), therefore taking into account the
fact that G{t) & H °‘(—— 2/\, 2/A), we easily arrive at the conclusion that the following
fanction of y exista in L -LD
brosgn (t — /A + G 1t~ /M) A — P v EL LY
Then the Lemma {see e.g. [7], ch. 1, Section 7) will imply the possibility of changing
the order of integration in the third term of the left-hand side of {2,16) and even more so in

the second term, Consequently we can rewrite (2.16) as
1

v@+ (v Mm ady=r@ a1t (2.19)
where i s
Miy,x}m“;“;"ff_;:'f;?{%” %ﬁ[bzasgn{i-—y}+6*<gﬂy}}dzw
—1
1
—Ta% i‘1+‘ b S ["“’ = “*“G<t;y>] Vrdf:?} (2.20)

Let us investigate the propcmes of the kernel {2,20) of the integral Eqg. {2.19). Obvious-
1y, the second integral in {2.20) is & function of y, snd therefore belongs to # “{-—- 1L, 1)
l-e<adl Further. since G’ (1) € H,*(~ 2/A, 2/A), we find that by the Comnary 1.1,
the integral

& Vt —

— G’( . )dleC(—i,i)

et



Solution of integral equations of mixed problems 409

as a function of x and is, at least, bounded in y. The latter can easily be shown, Finally
let us consider the integral

1....
S V sgn(t —y)dt==2zarcsiny—2 Y1—y* +

Vi d—9+1—
+ VT=mp LR 00 oo

We easily see that its only singularity is logarithmic, atx=y# 1 1.

Thus the kemnel M {y, %) has a singularity of the type (1 —y %)™ aty =11 and a loga-
rithmic singularity at x = y % % 1. At other values of x and y it is, at least, bounded.

Let us now perform the variable substitution ¥y = sinT, x = sin 6 in (2,19). This will
yield an integral equation whose kernel will retain only the logarithmic singularity and
which, consequently, is the Fredholm equation [8]. Then, by the Lemma of [5] and under
the assumption that {2,19) has a unique solution, we have

[P @Eind) )| =(¢@|< By ], B = const (2.21)

Let us now estimate y {x). Taking into account {2.12) we easily find that | y (x)| < & B,.

Inserting this into (2,21), we obtain (2.15)., We also note that
| P — Py < ely, Dy = const (2.22)
follows from (2.15), and this completes the proof,

The following theorems can also be proved in the similar manner.

Theorem 2.2 Ifsolutions exist in the class of functions L {(-=1, 1, 1+8>p>
> 1 for both, the integral Eqs. (1.1) and (1,5) and another integral equanon perturbed with
respect to the former, if these solutions are bounded in the €&-neighborhood of the point
x = — 1 and if the relation (1,16) holds for each of them, then the following estimate

19 (@) — 0 @Dy <ed @ — ), a—const  (2.23)
holds for any A & (0, 0 ).

If we assume that both of the above solutions are bounded in the &-neighborhood of the
point x = 1, then we have the following analogous theorem.

Theorem 23 Ifasolution of the integral Egs. (1.1) and (1.5) and a solution of
another integral equation perturbed with respect to the former, both exist in the class of
functions L , (- 1, 1), 1+ 8> p> 1, are bounded in the g-neighborhood of the points x= 11
and if relations (1.18) hold for both solutions, then the estimate

”(P (33) — $1 (x) ”c(-g, 1) < &4, A = const (224)

holds for any A € (0, o0).

Thus, when the conditions (2.12) hold, the Theorems 2.1 to 2.3 guarantee that the ap~
proximate solution of (1.1) with the approximated kernel will deviate little from the exact
solution. [t can, however, be easily seen that the function K * (1) + In |£l of the form of
{(2.10) and obtained from one of the approximate expressions (2.6) to (2.8) does not, in gener-
al, satisfy the first condition of (2.12). Therefore, when we use the approximations (2.6) to
(2.8) to obtain an approximate solution to (1.1) for small A, we cannot be absolutely certain
that the solution obtained will deviate from the exact solution by only a small amount. In-
deed, numerical analysis of examples based on the approximation (2.7) for small A, gave a
poor agreement with results known to be practically exact and obtained by other methods.

Thus the behavior of the function L () u*! as |u| + oo and the theorems given above,
imply the necessity of constructing approximations other than {2.6) to (2.8).

At this stage we note that we can always represent L (u) v"! as a sum of two functions

L () u? =L, () u + L, (u) ut
Ly @) ut = 0.5 [u]* (L (jud +L (—|u))] (2.25)
L, (W) u = 0.5 [u™ [L (ju]) — L (—u)l

and, when | 4| - 0, we obviously have

(xt y)e [_' ir ‘]
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Ly (W) ut = ul? [1 +cu? + 0 (u9]
Ly () wt = Ju|? [01 ul™ + e ju]® 4 O (ul9)]
This suggests at once, that L | (u) v’ 1 and L 2 () u"! could be approximated separately.

One of the approximations given by (2.6) to (2. 8) will, obviously, be suitable for L , ®) wl
while

La* (u) _ (2 + dy?)
u o (u® .L.CZ) H (Wi +17.9 (226)

should approximate the other function fairly well.

We can do it in a slightly different way, namely by approximating the whole function
L {u)u~! first, using one of the expressions (2.6} to {2.8). This will not be very accurate
even at large N, since, as we have already said, the functions (2.6) to (2. 8) do not des-
cribe the behavior of L (u) u"! completely. Next step will consist of approximating the dif-
ference L (Y u"! — L * (u) u~! by means of an expression of the form (2.26). Such an approach
appears to be suitable when the Wiener-Hopf integral Eq. (2.3) is solved by the method of
successive approximations (see Section 3) and this method converges at the rate, which is
inversely proportional to the value of

max |L (u) u=t — L¥ (w) u?|

Finally, we shall mention yet another method of approximating the function L (u) u™!:
first we approximate L (u) u~! using one of the expressions (2.6) to (2.8), and we follow it
by approximating the ratio L (u)/L * (u) with a function of the form exp[c M (u)] where M (u)
is a function analogous to {2.6) to {2.8). We easily see that the approxunanon constructed
in this manner will satisfy the conditions (1.3) and (1.4).

3. Solution of the Wiener-Hop! integral 2quation. Without going into
great detail, we shall represent the integral Eq. (2.3) by an equivalent functional equation
[4

@, (2) L@)at =F () +E-(a) 3.1)
where
D, (@) = 712? S Yy (Deirdr,  F (a)=— 7’—2%;5

n

E_(a) = % Vesmedr, e ()= 2n51p¢1( @—vydr  (3.2)
O0>x> 00 ’

Let us now consider the approximate solution of (3.1), Writing L (u) u*! in the form of
(2.25) and taking {2.7) and (2.28) into account, we obtain
O, (@) L*@at —e® (@) L*@a =F(@)+E (@), e=1t (3.2)
where the parameter & is brought in for convenience. Taking into account the fact that

max|L *(w)u-1y is small compared with L, * (u) u~! (we can show this by approximating
the functxon L (u) u~! as shown in Section 2), we shall seek the solution of (3.2) in the form

(see e.g. [4], Sections 4 and 5)
D, (@) = 0P +e®P 2P . 1 mpim (3.3)
Inserting the latter into (3.2) and comparing the coefficients of like powers of &, we
obtain the following system of functional equations

OP (@) L* (@) ot = F, (@) + E- (@) (3.4)
DY (@) Li* @)t + O (@) L* (@) a? = (3.5)

In view of the fact that 7 (x) has, in general (see Theorem 1.1), a singularity of the
type (1 — x 2)™% at the ends, we shall, taking into account (2,2), seek the solution of (2.3)
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in the class of fanctions satisfying the condition i, (7} 7*% a8 T + 0. Applying the usnal
ressoning [4] we obtain,

O (@) = iye @) @ FB)* (Ly* (@ eI EL* (£B) B

Li* @) at = [L* @) als [L* (@) at)- (3.6)
as the solution of the functional equation (3.3). This, substituted into (3.5) yields after
some elementary manipulations

OP (@) = 2 @0, (@) (L* @a Y [£L* (£H)p
co-t-fe

i i Ly* (v} dv
G =gz | TErmir@i—s (3.7)
— ¥ 1+

Writing now (724 B %)% as
(=* + Bk = g, (v) 8- (7)
g (1) = in~t (v* 4 B~ ln {(iB) Iv + (v 4 BY)"]} 3.8
g (1) = — in"* (¥ 4 B~ In {(—iB)™ [v + («* 4 B*)Al}

we can easily obtain an expression for G (@) by writing the integral entering (3.7) as two
integrals, one of them containing only the poles of the integrand function corresponding to
Im'7 > ¢, and the other the poles corresponding to Im'7T < ¢. Further, substituting (3.7} into
{3.6) and solving the resulting fanctional equation, we find @(3)&1) etc. The subsequent
terms of {3.3) are more difficalt to obtain, since difficulties are encountered in calculating
integrals of the type (3.7); in practice ‘Q_{l) {1} is often found sufficiently accurate.

Let us now construct a solution of (3,1), based on the approximation described in Section
2. We shall write the function L () u~? in the form

L{u)u™ =exp ;M (w)] L* (w)u™, M(u)= ‘+ = ] H ::i::;

Eq. (3.1) can be written as
D, (@) L* (2)o exp [e;M ()] = F, (&) +E_ () (3.9)
Solution of this equation will be
®, (@) = i (20 4 (@ F B) [L*@) a1 [£L* B) B X

X exp{—c;, [M_ (& +M_(xPI} (3.10)
oo4-ib ut a2
M+(a)"‘ S V“"‘l’c: H Wby ’u—a

Function M, (a) is easily ab:xme& ii we take into ucconxzt {3.8) and the note conceming
the computation of the integral entering (3,7). Although the formula (3.10) gives a closed
solution of (3.9) we find, that, to obtain y, (7) we must perform a complicated contour inte-
gration, using approximate methods. The computation simplifies if, taking into account the
properties of M (u) given at the end of Section 2, we: write (3.10) in the form

@, (@) =i @r) "y, @ FB)L LY (a) a7 [ L7 (£ B) BT X
X exp [—aM_ (£ B)] }} (—1)* M (3.14)

We easily see that {3.11) is analogous to (3.3) with one exception, — that in (3.11), all
‘D! () are already defined.

4. Examples. We shall consider the problems on ths interaction between & stiff tire
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on a cylindrical surface {Problem a}{*}, and between a stiff bushing and the surface of a
cylindrical cavity in an elastic space {Problem b}). We shall assume that friction is absent
within the area of elastic contact, and, that there is no load outside this area. Using opera-
tional methods we can reduce these problems to the determination of the contact pressure

q (z) for the following integral equation [1]

1
T flz]<<a, h==Ra™, §=Aya™
Sls?(at}ﬁ’< - }aﬁ":ﬂﬁ ( A B (1 — v )

t~—z

K{i)mg cos ut du (tm n )
0O

Here a denotes the semivwidth of the tire (bushing), R is the radius of the cylinder
{cavity) , ¥ denotes the depth of penetration of the tire (bushing) into the surface of the
cylinder (cavity) and L (z) u*! is defined by Formulas (2.3) or {2.4) of[1].

To solve the problems, we shall use L {u) ™1 as given by (2.25), putting in the latter

Lyw)  Vut+ B (u+ DY) La(u) e® (u? - d?)
w TT@TONETE) ' T w S @AON@ TR ET )

Using Formulas (3.6), (3.7) and (3.2) we obtain

¥ i(o) (=8 A (Pt uy ™ A7 erf VBE ~— roe™ Pt erf VBE=DT]

L {u)
u

'@’{é} )= B A™ {— 8o (1) 1 (D) To* (D, )+ ri{e) Jo (e, )+ ree Plerf VB—D) 1 +
1

+ r,,S et VE D)t Ko [B(t— )} dr 11 {— &) Jo (— ¢, 1) —
o
w ADrod ™ (— D, t) ~rosD (B — DY [83 (1) + g, (D) 72 exp (— BY]} (41)
where

M(C*‘D)(EWD) re () = {d — 29 (C + ) (E -} @) Ay g — D?
n="pvE—b * YT e—)D+taVBre T 2E—D)
1 AB 2A4,D% D et
rgw?[z(gloo)w D:'—:: —Al(C-»f-E“*ZD)]y Az = W

41 (2D — B rog, (iD} _ 24.Derog, (ie}

=R (B D) o — A (C+ E—2D) g, (iD)
1
LI BD* ‘
Skwﬁ;:sf:f e TR [B(t—D)]dr, A= 4.2)
4]

t
I 5z, = %S el VBT Ot Ko (Bt —T1)] v drTF g (i7) Felat ViBF a1
1]

In the above formulas K (x) is the MacDonald fanction, while the functions g, (ix) and
W, (¢) have the form

g, (ig)= w7 (B2 — 2t il B o - (B — 29 P =g (— ix) ¥y (=¥ () + P (1)
Approximating the function L (u} u™! with an error not exceeding 5% over the whole in-
terval of variation of u & [0, o) we find, that for the Problem & we have: B= 1, D = 1.0354,
C = 1.7321, E = 0.,9640, ¢, = 0ud, 4= — 0.4, € = 1.2247, while for the Problem b we have:

B=1,D= 10354, C = 1.264, E = 0.9654, 8 = — O.4andd=e=0.

*) This problem for a semi-infinite tire was considered in [10 and 11}, and for the finite
tire ~ in {12 and 13}. Complete solution was, however, not obtained.
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The Table gives, for comparison purposes, some values of ¢ *(0) = ¢ (0) 5°1, 4 *(0.5) =

=¢4(0.5) 8 tand of f(1)=lim[ /1 —x2¢(x) 5-T] as x > 1 obtained for A= 2 from Formu-
las (4.1}, (4.2) and (2.2), (2.5) of the present paper, and from Formulas (1,14) to (1.18) and
(2.12), (2.13) of [1].

TABLE
| eo |eon 1o

(1.18)—1.18) (1} | 1470 | 1.241 | 0.923
. 2.12) (1 1.223 1.304 | 0.898
(4.1), (4.2),
(2.2), (2.5) 1,222 1.308 | 0.910
(1.14)—1.18) [1] | 0.988 | 1.025 | 0.666
. (2.13) [1] 0.931 1.018 | 0.697
(4.1), (4.2), 0.936 1.025 | 0.668
(2.2), {(2.5) . . .

From these data we can infer, that the solution obtained in the present paper gives a good

agreement at A= 2, and the method implies that its accuracy will increase with decreasing
A.-We can therefore conclude, that this solution and the solution given in 1], make possi-
ble the investigation of the given class of integral equations over the whole range of values
of A.

1.

2.
3.

5.

10.

11.

12.

13'
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